Evolutionary escalation: the bat-moth arms race.

نویسندگان

  • Hannah M Ter Hofstede
  • John M Ratcliffe
چکیده

Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for anti-predator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiger moth jams bat sonar.

In response to sonar-guided attacking bats, some tiger moths make ultrasonic clicks of their own. The lepidopteran sounds have previously been shown to alert bats to some moths' toxic chemistry and also to startle bats unaccustomed to sonic prey. The moth sounds could also interfere with, or "jam," bat sonar, but evidence for such jamming has been inconclusive. Using ultrasonic recording and hi...

متن کامل

Sound strategies: the 65-million-year-old battle between bats and insects.

The intimate details regarding the coevolution of bats and moths have been elucidated over the past 50 years. The bat-moth story began with the evolution of bat sonar, an exquisite ultrasonic system for tracking prey through the night sky. Moths countered with ears tuned to the high frequencies of bat echolocation and with evasive action through directed turns, loops, spirals, drops, and power ...

متن کامل

Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?

It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency...

متن کامل

Extremely high frequency sensitivity in a 'simple' ear.

An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing...

متن کامل

Does Extra Genetic Diversity Maintain Escalation in a Co-Evolutionary Arms Race

In evolutionary computation (EC), genetic diversity (or its absence) gets the credit (or the blame) for a multitude of effects — and so mutation operators, population initialization, and even pseudo-random number generators, all get probed and prodded to improve genetic diversity. This paper demonstrates how extra initial diversity can appear to cause improvements in the performance of coevolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 219 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2016